
How to

REVERSE
MALWARE
ON MACOS

Without

Getting Infected

Phil Stokes

Sponsored by

How to Reverse Malware on macOS without Getting Infected 2

Foreword . 3

Author’s Note . 5

Introduction . 6

Part One . 7

How To Set Up A Safe Environment To Test Malware . 7

Isolate Your macOS Guests! . 8

Tools For Testing Malware On macOS . 10

How To Find Malware Samples For macOS . 1 1

macOS Malware File Analysis – First Steps . 13

How To Check The Code Signature . 14

Application Bundle Structure . 15

How to Gather File Metadata . 16

Review: Where We Are So Far . . . 18

Part Two . 19

What is a Mach-O Binary? . 19

Exploring Segments & Sections . 20

The Power of Pulling Strings .22

Using Otool To Examine A Binary . 23

Compiling Indicators of Compromise .26

Review: Where We Are So Far 28

Part Three . 29

How to Run Malware Blocked by Apple .29

Using LLDB to Examine Malware . 30

Launching a Process in LLDB .32

How to Read Registers in LLDB . 35

How to Exit the LLDB Debugger . 37

Next Steps with macOS Reverse Engineering .38

Conclusion . 39

TABLE OF CONTENTS

How to Reverse Malware on macOS without Getting Infected 3

Foreword

By

Patrick Wardle

I'm strangely fascinated by malware. At a young age, tales of programs that

could autonomously infect systems across the globe all the while stealthily

avoiding detection seemed like the closest thing to "life" in cyberspace.

I craved more insight into these malicious creations, seeking answers to

questions such as:

"How does malware infect computer systems?"

"To remain undetected, what stealth mechanism does the malware employ?"

"How can we generally detect such threats to ensure users remain protected?"

A job in the "Malicious Code Analysis" branch within the National Security Agency

(NSA) gave me insight to many of these questions through the analysis of

sophisticated "nation-state" malware designed to penetrate US government

networks.

Since that time I've continually studied malware, though now I exclusively focus

on specimens that target Apple's macOS platform. And though malware

continues to evolve, the methods used to analyze it remain largely the same.

Analyzing Mac malware comes with a few unique challenges. First and foremost,

How to Reverse Malware on macOS without Getting Infected 4

the amount of malware that targets Cupertino's desktop OS is far less than that

which infects Microsoft PCs. This means less samples to analyze, limited analysis

tools, and a smaller community of researchers publishing research or analysis on

such threats.

These challenges inspired me to create the Mac security website "Objective-See"

(Objective-See.com) and the World's only Mac security conference, "Objective by

the Sea." Both the site and conference seek to bring together knowledge and

resources on Mac security topics such as Mac malware. The conference talks,

website blogs, and comprehensive Mac malware collection are invaluable

resources for both advanced Mac malware analysts and those that are just

starting out.

However, one essential piece of the "malware analysis puzzle" was (until now!)

missing. That piece, quite simply, was: where and how to begin malware analysis

on the Mac platform?

Today, you're reading an excellent resource that seeks to provide the foundations,

knowledge, and tools needed for you to become a proficient Mac malware

analyst. Starting with the (imperative) basics such as setting up a safe analysis

environment, it will walk you towards more advanced topics.

Along the way, links to more in depth content and specialized tools will be

provided for the more adventurous reader.

So read on to begin (or enhance) your Mac malware analysis journey!

Patrick Wardle

Objective-See.com

https://objective-see.com/

How to Reverse Malware on macOS without Getting Infected 5

Author’s Note
If you're interested in developing skills in macOS malware analysis and reverse

engineering, this short guide will help you on your way.

It assumes some familiarity with the command line and a basic knowledge of

Apple programming language syntax, but even if you lack those, the guide is

written in such a way that you should be able to play along step-by-step and

arrive at the expected outcome. The onus is then on the learner to fill in any

blanks encountered along the way, but if you complete this tutorial I'm sure you'll

have been bitten deeply enough to have all the encouragement you need.

Motivation is always the primary factor in learning anything new, but a supportive

community of like-minded enthusiasts will also help propel you to success. You'll

find plenty of macOS enthusiasts to follow in this list of macOS Twitter accounts I

curated for @SentinelOne.

You can also follow me on Twitter @philofishal, where I'll be more than happy to

answer your questions or discuss the finer points of macOS reverse engineering

and malware analysis with you!

Phil Stokes

philips@sentinelone.com

https://twitter.com/philofishal
https://twitter.com/SentinelOne
https://www.sentinelone.com/blog/21-macos-ios-twitter-accounts-should-follow/

How to Reverse Malware on macOS without Getting Infected 6

Resources for learning malware analysis and reverse engineering abound for the

Windows platform and PE files, but by comparison there’s very little literature or

tutorials for those who want to learn specifically about how to reverse macOS

malware and macOS malware analysis techniques.

In this eBook, you’ll learn how to set up a safe environment and how to acquire

both the tools you need and samples to work on. You’ll then take a sample file

and, step-by-step, learn how to use native tools and techniques to understand

what a file does and to build a list of IoCs (Indicators of Compromise) that can be

used in detection. Along the way you’ll learn how to use tools to conduct static

analysis and dynamic analysis, and — I hope! — have some fun, too.

Introduction

Let’s get started!

How to Reverse Malware on macOS without Getting Infected 7

To test malware, you’ll need to download some virtualization software to run a

guest operating system. There’s basically three choices on macOS: VirtualBox,

Parallels and VMWare. I have no preference here, so choose one, read the docs to

set up a macOS Virtual Machine (any recent version will do, but this tutorial will

use a Parallels Desktop VM instance running macOS 10.14.3) and come back here

when you’re ready.Take a look at the configuration options for your guest OS.

Part One

How To Set Up A Safe Environment To
Test Malware

There’s a few things you’ll want to change. First, VMs can be laggy, so make sure

you’ve afforded the VM enough RAM: 2GB is a minimum, but 4GB should make

https://www.vmware.com/products/fusion.html
https://www.parallels.com/
https://www.virtualbox.org/

How to Reverse Malware on macOS without Getting Infected 8

things nice and smooth. For the same reason, up the graphics memory to at least

512MB.

Some malware tries to detect if you’re running it in a VM and alters its behavior as

a result. Although we won’t deal with that situation in this tutorial, one trick that

can help is to change the default MAC address of the machine. For Parallels

change the MAC address so that it doesn’t begin with 00-1C-42, for VirtualBox

change it to anything other than 08-00-27, and for VMWare avoid the following

prefixes: 00-50-56, 00-0C-29 and 00-05-69.

Isolate Your macOS Guests!

Most importantly, isolate the VM guest from your actual machine (the ‘host’). That

means you must not share any drives or folders, including backups. The malware

must have no means of escape from your VM guest. I don’t even share the

clipboard.

How you do this depends on your particular VM software and its version, but the

relevant options in Parallels Desktop 14, for example, are in the Security tab.

How to Reverse Malware on macOS without Getting Infected 9

In the most recent version of VMWare’s Fusion that I have, the Isolation panel is

not the only place to look. Go through the other panels (e.g., ‘Sharing’) and disable

anything that connects the guest to the host. The only thing the VM instance

needs access to is the internet, which is usually set up by default.

After making the changes, start the VM and ensure that Shared Folders is empty.

How to Reverse Malware on macOS without Getting Infected 10

Isolation is essential, but what if you want to offload some screenshots or output

files for future reference? In that case, use the guest’s browser and a free service

like wetransfer.com to email compressed and password-protected files to

yourself.

Tools For Testing Malware On macOS

From here on in, assume everything we discuss refers to actions inside your

isolated VM instance. Take a moment to adjust any System Preferences or

Application preferences to your liking, in particular the Terminal, as we’re going to

be in there most of the time.

On the command line, call the strings utility to set off the prompt to install Apple’s

command line tools. Work through the prompts till you’re done.

And here’s the good news: you actually now have all the tools installed that you

need to learn macOS malware analysis and reverse engineering!

These tools include a string decoder (strings), file analysis utilities (file, nm, xattr,

mdls and others), hex editors (hexdump, od, xxd), a static disassembler (otool),

and a debugger, memory reader and dynamic disassembler (lldb). And we got all

those for free!

https://wetransfer.com/

How to Reverse Malware on macOS without Getting Infected 11

Yes, you may have been expecting to hear about the many cool tools that

professionals use like Hopper, Cutter, Radare2, Floss and the hundreds of excellent

community-provided tools available on public repos.

We’ll mention some of those during this series and at the end, but we’re not going

to need them at this stage. Why not? Because as learners, we want to understand

the basic concepts of what we’re doing. Professional tools are great for saving

time and making you more productive, but in a learning context they can easily

confuse or hide important details.

How To Find Malware Samples For
macOS

There’s just one thing missing before we can get started on macOS malware

analysis and reverse engineering: some macOS malware!

Let’s set up a working directory on our VM guest, where we’ll save our samples

and do all our work. Something like:

https://www.radare.org/r/
https://github.com/radareorg/cutter
https://www.hopperapp.com/

How to Reverse Malware on macOS without Getting Infected 12

$ mkdir ~/Malware

There’s a number of sources for getting sample malware. Probably one of the

most popular is Virustotal, but you can only download samples from there if you

have a paid account. Luckily, there are other public repositories like malpedia,

malshare, and Patrick Wardle’s Mac Malware Repository. The sample we’re going

to use for this tutorial has the following hash and should be available from any of

the sources above.

197977025c53d063723e6ca2bceb9b98beff6f540de80b28375399c
dadfed42c

It’s not the most dangerous malware in the world – good for us as we learn! – but

it does have some unexpected behaviour, including dropping an instance of the

mysterious malware Apple labelled MACOS.35846e4 as one of its consequences.

It also has some tricky obfuscated code that we’ll need to figure out how to

decrypt on the way.

https://www.sentinelone.com/blog/apples-malware-removal-mrt-tool-update/
https://objective-see.com/malware.html
https://malshare.com/index.php
https://malpedia.caad.fkie.fraunhofer.de/
https://www.virustotal.com/gui/file/197977025c53d063723e6ca2bceb9b98beff6f540de80b28375399cdadfed42c/detection
https://zeltser.com/malware-sample-sources/

How to Reverse Malware on macOS without Getting Infected 13

macOS Malware File Analysis – First
Steps

Download the sample and move it to your working directory. If you’re not already

doing that in the Terminal, let’s switch to the command line now and rename the

file to something more manageable:

$ mv
197977025c53d063723e6ca2bceb9b98beff6f540de80b28375399c
dadfed42c.dms malware01

Let’s find out what kind of thing it is with the file utility:

$ file malware01

It’s a zip file, so lets inflate it and see what we have:

$ unzip malware01

The output from Terminal shows us that it’s a macOS application bundle with a

regular hierarchy.

How to Reverse Malware on macOS without Getting Infected 14

How To Check The Code Signature

Interestingly, there’s a _CodeSignature folder, which only exists if a bundle has

been codesigned by a developer. So let’s find out who the developer is.

$ codesign -dvvvv -r - UnpackNw.app/

This tells us a number of useful things that we can use to build our list of IoCs. Both

the bundle Identifier and the TeamIdentifier (aka Apple Developer Signing

Certificate) can be used in detection software, so always make a note of those

early in your analysis if they exist.

Let’s find out if the developer’s certificate is still valid or whether it’s been revoked

by Apple:

$ spctl --verbose=4 --assess --type execute
UnpackNw.app

How to Reverse Malware on macOS without Getting Infected 15

If the file’s code signature is no longer accepted, you’ll see

CSSMERR_TP_CERT_REVOKED in the output. In this case, the certificate is

accepted.

A code signature doesn’t mean all that much. There’s plenty of fake and rogue

developer accounts. What it does mean is that if the app is run, it should be

subject to checks by Gatekeeper and XProtect unless we bypass them, which we’ll

discuss further on when we do some dynamic analysis.

Application Bundle Structure

Let’s change directory into the bundle now so that we can more easily work with

the contents.

$ cd UnpackNw.app/Contents

In Mac Application bundles, there’s a couple of things that are required. There

must be an Info.plist, and there must be at least two other folders: a MacOS folder,

which contains the bundle’s main executable, and a Resources folder, which can

contain anything else the developer wants to package, including scripts and

executables. You may also see other folders in other samples, such as

Frameworks, Plugins and so on. Refer to Apple’s documentation to learn more

about bundle structure.

The Info.plist can contain useful information about the application’s capabilities.

We use plutil with the -p switch to read them on the command line.

$ plutil -p Info.plist

Note that the output includes “CFBundleIdentifier”, the bundle identifier from the

codesign utility, so you can get that for your list of IoCs here if you are dealing with

a sample that isn’t codesigned.

https://developer.apple.com/library/archive/documentation/CoreFoundation/Conceptual/CFBundles/BundleTypes/BundleTypes.html#//apple_ref/doc/uid/10000123i-CH101-SW19
https://www.sentinelone.com/blog/how-malware-bypass-macos-gatekeeper/

How to Reverse Malware on macOS without Getting Infected 16

We can learn a number of useful things from an Info.plist such as the minimum

macOS version the sample will run on, and even what macOS version and build

number the malware author was using when they built it. These details can be

useful both for attribution and analysis: knowing the developer’s build version

may be an important clue if we’re trying to work out why some code was or

wasn’t included, or why some versions of the malware run differently on different

victims’ machines.

Let’s move on to the Resources folder. There’s something interesting in here I

noticed when we decompressed the zip file earlier.

What’s that “unpack.txt” file, and why does it have an asterisk after it? Let’s collect

more details about it before we peek inside.

How to Gather File Metadata

There’s a bunch of useful commands that you can use on any file on macOS to

gather metadata about it, and it’s always a good idea to do that before opening

an unknown file.

=> "com.techyutils.unpack"

How to Reverse Malware on macOS without Getting Infected 17

As the image above shows, we can use both xattr -l and ls -al@ to list a file’s

extended attributes and permissions.

The mdls tool is a great utility that will also list metadata held by Spotlight and the

Finder. As this metadata is persistent across file transfers, you can sometimes

catch info about the source in here, too. The man pages of these utilities will tell

you more about how to use them.

Look again at the output of ls -al@. Those three x characters in the permissions

list indicate it has executable permissions, which is pretty odd for something

that’s supposed to be a plain text file. That’s what the asterisk on the end of the

filename was signalling as well: a file with executable permissions.

OK, let’s get cracking and see what’s inside it! You can use cat or a regular text

editor in the GUI, but I prefer to use vi.

Let’s start with the file utility to see whether the item really is what its extension

claims it is. In this case, it turns out to be a regular ASCII text file.

How to Reverse Malware on macOS without Getting Infected 18

Woah, that’s interesting! We have a plain text file with executable permissions

that’s full of obfuscated code. Suspicious, indeed! But what does all that

obfuscated code mean? We’re going to need to dig into the main executable to

find out. That’s coming next!

Review: Where We Are So Far

We’ve seen the importance of setting up a safe testing environment and how to

do that to test macOS malware. We’ve found out how and where to source

malware samples from, and we’ve looked at ways to determine what an

application bundle contains and how to read a file’s metadata. In our sample,

we’ve found something interesting and obfuscated. But is it malicious, and how

can we decode it?

Let’s continue our exploration into macOS reverse engineering skills and dig into

the static analysis of Mach-O executables, Mach-O disassembly and more in Part

Two.

How to Reverse Malware on macOS without Getting Infected 19

Part Two

What is a Mach-O Binary?

Let’s change directory into ../MacOS/ and list the contents.

There’s a single binary as expected. Let’s run file on it and see what it says:

$ file UnPackNw

The file utility tells us that this is a Mach-O binary. We’ll keep the theory down to

the minimum as this is a practical, hands-on tutorial, but we do need to cover the

basics of what this means.

If you’ve come from a Windows or Linux background, you’ll perhaps be familiar

with their basic file types, PE and ELF. Although macOS shares Linux’s Unix heritage,

it cannot natively run ELF (or, indeed, PE files, at least not without the help of

importing a framework like Mono, anyway). Instead, it has a unique file format

called Mach-O, which essentially comes in two flavors: the so-called “fat” or

How to Reverse Malware on macOS without Getting Infected 20

universal binaries which contain multiple architectures, and the single

architecture Mach-O type. If you examine the perl binary, for example, with file

and lipo, you’ll see that it’s a “fat” file.

If you find yourself dealing with a “fat” binary, you can easily use the lipo tool to

extract the Mach-O architecture, but we won’t be needing to do that in this

tutorial.

Exploring Segments & Sections

Let’s use the pagestuff utility to have a first look at our binary’s internal structure.

This tool is kind of odd in that the switches come after the file name:

$ pagestuff UnpackNw -a

A Mach-O binary contains a number of segments, which are in turn composed of

sections. For the purposes of this tutorial, we only need to know that the __TEXT

segment contains the __text section, which contains all the executable functions

and methods. A couple of good intros on this topic, which I highly recommend for

How to Reverse Malware on macOS without Getting Infected 21

anyone serious about getting into macOS malware reverse engineering,

can be found here and here. Here’s a partial output of what you should see

after running the above command:

The output of pagestuff shows us that the malware contains some

interestingly-named Objective-C methods, including “deleteAppBySelf” and

“silentlyFireURL:”.

We can get similar and perhaps more useful info using the nm utility. I’ll use

the -m switch here to display the Mach-O segment and section names in

alphabetical order, but you should definitely check out its man page to see

some of the other options.

$ nm -m UnpackNw

https://www.objc.io/issues/6-build-tools/mach-o-executables/
https://www.mikeash.com/pyblog/friday-qa-2012-11-30-lets-build-a-mach-o-executable.html

How to Reverse Malware on macOS without Getting Infected 22

The method that immediately catches my eye from these outputs with regard to

our mysterious encrypted text file is the “encryptDecryptOperation:” class method.

Let’s do some more digging.

The Power of Pulling Strings

One of the most useful utilities for static analysis is the strings utility.

Let’s dump the ASCII strings from the binary to a separate text file so we can more

easily view and manipulate them. The strings utility has several options, but I like

to use the - option. This causes the utility to look for strings in all bytes of the file:

There’s some interesting things in here, including some URLs and other bundle

identifiers. We even find a file reference to the developer’s own file system and

some user names. This kind of info can be extremely useful if you are trying to

establish attribution in a malware campaign.

$ strings - UnPackNw > ~/Malware/strings-.txt

If you’re familiar with using strings on Linux, be aware that the macOS version isn’t

quite the same. Specifically, it doesn’t have the ability to decode unicode, so you

might want to consider using something like floss, which is a bit more powerful.

https://github.com/fireeye/flare-floss

How to Reverse Malware on macOS without Getting Infected 23

Examining the strings in a file can give you a very good overview of a malware’s

functionality, but we still haven’t got any closer to our encrypted text file. It’s time

to introduce you to otool.

Using Otool To Examine A Binary

One of my main “go to” tools is otool. Let’s take a quick look at what you can do

with it. As with strings and other tools, I usually dump all this info to separate text

files so that I can pore through them at will.

Let’s start with seeing what shared libraries a binary links to.

$ otool -L UnPackNw > ~/Malware/libs.txt

Opening the libs.txt file reveals the following:

From this, we can see our malware will have some ability to implement browser

features via linking to the WebKit framework, something we’d expect in an adware

type infection.

We can also dump the method names from the Mach-O binary’s ObjC section:

https://developer.apple.com/documentation/webkit

How to Reverse Malware on macOS without Getting Infected 24

Most usefully, we can obtain the disassembly with:

$ otool -tV UnPackNw > ~/Malware/disassembly.txt

In the disassembly, search for the name of our obfuscated text file, ‘unpack’:

$ otool -oV UnPackNw > ~/Malware/methods.txt

How to Reverse Malware on macOS without Getting Infected 25

That takes us to Line 2185:

Examine the code between lines 48 and 58. Here we see the call to get the file’s

contents from the bundle’s Resource folder. Scrolling down to line 67, we see the

creation of a string from the contents of the file and then the call to decrypt the

string on line 73.

Let’s take a look at the decryption method, which we can search for on vi’s

command line:

Lines 2190 to 2193 are revealing. We’re starting to get closer to solving the mystery

of our encrypted text file. At this point, I’d probably jump into Cutter or Hopper and

see how this looks in pseudocode, but the assembly already suggests to us that

this is going to iterate over some hardcoded strings and likely XOR each

How to Reverse Malware on macOS without Getting Infected 26

Compiling Indicators of Compromise

However, before we move on, let’s continue to search around the disassembly to

see what else we can determine. From our strings output, we noticed some

references to /bin/ and NSTask, which are tell-tale indicators that the malware is

calling command line utilities, so let’s search for those in the disassembly. Check

out line 327:

Here, we can see the code loads the chmod string into the register and that the

malware changes the permissions on a file to make it world readable, writable

and executable at line 346. Other searches will reveal that the binary is going to

create, execute and delete a script of some kind, and also use AppleScript to read

in a file and execute it.

character from the encrypted unpack.txt file.

It can be an interesting exercise in scripting to build your own decryptor based on

the assembly, but it’s quicker to run the code and view it being decrypted in

memory. In other words, we need to dive into some dynamic analysis. That’s

precisely what we’re going to do in Part 3.

https://www.sentinelone.com/blog/trail-osx-fairytale-adware-playing-malware/

How to Reverse Malware on macOS without Getting Infected 27

By examining the kind of output we’ve produced so far, you’ll get a sense of how

the malware is going to work, and you should be able to develop IoCs for Yara

rules or other search engine parameters. Depending on how you want to detect

this malware, you could easily build rules that would search a binary for strings

like those at line 2190 or for hardcoded URLs, but at the same time it would also be

easy for malware authors to substitute those for others in their next iteration, thus

breaking your detections. A little more robust would be to hit on the method

names, and you would probably want to choose a couple of other things to make

sure you avoid false positives.

That will defeat lazy malware authors, but it doesn’t take much effort for

adversaries to refactor their code at build-time and obfuscate method names, so

even that kind of string detection is only likely to work temporarily.

Also, notice that aside from not having yet found our obscured text, we don’t know

if there are other IoCs that are only resolved at runtime. This means that you need

to supplement your static analysis with a look at the sample in action because a

lot of interesting behaviour cannot be determined except at runtime. Dynamic

Analysis, then, is our next task!

My advice at this stage is to search for things of interest till you get an overall

impression of what the binary is up to. For example, grepping the disassembly

and strings files can reveal hardcoded URLs.

https://github.com/preemptive/PPiOS-Rename/blob/master/README.md

How to Reverse Malware on macOS without Getting Infected 28

Review: Where We Are So Far

In Part 2, we’ve looked at how to disassemble a file and extract strings and other

important information from it. We’ve done all this in a kind of “old school” way

without using professional grade tools in order to illustrate the fundamental

techniques. We’re now at the stage where we really need to see what the

malware does in action, and while doing that we will hopefully catch the

encrypted string in the unpack.txt file being decoded in memory. That’s where

we’re headed next.

How to Reverse Malware on macOS without Getting Infected 29

Part Three

In the first part of our tutorial on macOS malware reverse engineering skills, we

found the unpack.txt file containing encrypted code in the Resources folder. In

Part 2, we went on to examine the main executable using static analysis

techniques to learn more. As a result, we found a class method in the binary

called +[EncodeDecodeOps enncryptDecryptString:]. That looks a likely

candidate for where the code in the text file might be read into memory.

It’s time to run our sample in our isolated VM in a controlled manner so that we

can examine it at any point of our choosing. In particular, we want to read the

encrypted string in the unpack.txt file in clear text to see how it contributes to our

understanding of this malware’s behavior.

How to Run Malware Blocked by Apple

In order to run our malware, we’re going to have to first make sure that it hasn’t

been blocked by Apple’s Gatekeeper or XProtect features. You can check whether

Gatekeeper has flagged a file by listing the extended attributes on the command

line. We do that by passing the -l flag and the file path to the xattr utility.

$ xattr -l UnPackW

If the result contains com.apple.quarantine, then the file will be subject to any

restrictions imposed by the local Gatekeeper policy (as set either in System

Preferences > Security tab or via spctl and stored in /var/db/SystemPolicy).

com.apple.quarantine:
0083;5caf3e68;Safari;5FFF1FBA-3A55-4647-8280-
DBB57E3FC8A1

https://www.sentinelone.com/blog/malware-can-easily-defeat-apples-macos-security/

How to Reverse Malware on macOS without Getting Infected 30

Gatekeeper will also pass the file to XProtect for checking to see if it’s known to

Apple’s malware rules. These checks are in place to help keep users safe, but in

our case we don’t want the OS to block our sample. Since our executable is likely

to call other files in the bundle including, we hope, the unpack.txt file in the

Resources folder, it’s best to remove the quarantine bit from the entire bundle

rather than just the executable. To remove the extended attribute and bypass

both Gatekeeper and XProtect, simply pass the -rc flags and then the file path to

xattr.

$ xattr -rc ~/Malware/UnPackNw.app

Using LLDB to Examine Malware

At last, we’re ready for the fun part. Let’s get into some dynamic analysis! To do

that we use lldb, the low-level debugger, which you installed at the very beginning

of this tutorial when we set up the command line tools in Part 1.

Open a Terminal session and change to the “MacOS” directory of the

UnPackNw.app bundle.

$ cd ~/Malware/UnPackNw.app/Contents/MacOS

We’ll use lldb in interactive mode, so start by calling it with no arguments:

$ lldb

You’ll see the usual $ symbol replaced by (lldb), indicating that we’ve entered

interactive mode. The next step is to tell the debugger which file we want to

attach to using its file command. Note that this is a command within lldb itself

and is unrelated to the /usr/bin/file utility we used earlier in the tutorial.

How to Reverse Malware on macOS without Getting Infected 31

(lldb) file UnPackNw

Compare the output of the file utility with that of the command from lldb:

Now that we’ve told the debugger which file we want to attach to, we don’t have

to keep passing the file name with any further commands we issue within our

interactive session.

The next step is to launch the malware, but we don’t want to just fire the whole

thing off and let it do what it wants. We need to control the execution, which we

do by using the process command. Let’s take a moment to see what that does:

(lldb) help process

You’ll see the help output for the process command and its various

subcommands. Let’s dig deeper. We’re going to use the launch subcommand

with the -s option. Type:

(lldb) help process launch

You’ll see an explanation of what each option does. When we pass the launch

subcommand to process with the -s subcommand option, it launches the

executable and attempts to suspend execution when it hits the program’s first

function entry point.

How to Reverse Malware on macOS without Getting Infected 32

The first entry point should be dyld_start, which is when the dynamic linker starts

loading any libraries the malware relies on before getting to the binary’s own

code (recall from Part 2 that we can list dependent libraries with otool -L).

However, some malware tries to disguise its true entry point, and other malware

tries to prevent you from attaching a debugger with a variety of tricks, which you

may need to work around.

Launching a Process in LLDB

Let’s try it out and see what happens (reminder: of course, you are doing this in

your isolated VM that we set up in Part 1!).

(lldb) process launch -s

https://alexomara.com/blog/defeating-anti-debug-techniques-macos-ptrace-variants/
https://www.pnfsoftware.com/blog/having-fun-with-obfuscated-mach-o-files/

How to Reverse Malware on macOS without Getting Infected 33

Great! We’ve stopped at the beginning of code execution, dyld_start, as

expected. Now, let’s set a breakpoint on a method we’re interested in. Note that

the method is possibly misspelled, so be sure to type it exactly as it appears in the

code (no autocorrect thanks!).

(lldb) breakpoint set -n "+[EncodeDecodeOps
enncryptDecryptString:]"

Check that you receive a confirmation that the breakpoint has been set correctly

at a given address. If you see a message like “no locations (pending)” or any other

warning, check your typing and try again. There are many ways to set breakpoints

in lldb, including using regex, but for now you’ll want to go the long way around

until you’re more confident about what you’re doing. If you accidentally set a

breakpoint that you don’t want, you can use breakpoint delete or the

abbreviated version br del to delete all your breakpoints and start over (you can

delete breakpoints individually, too, but I’ll leave that as an exercise for the

reader).

With our breakpoint successfully set, we need to type either continue or just the

letter c to tell the debugger to resume execution until it hits our breakpoint.

We’ve stopped at the entry to the function. Let’s see a bit more of the disassembly

so we can orient ourselves.

https://lldb.llvm.org/use/tutorial.html
https://segmentfault.com/a/1190000012134819
https://debugging-with-lldb.blogspot.com/2013/07/lldb-breakpoint-commands.html

How to Reverse Malware on macOS without Getting Infected 34

Scroll back up to the start of the output (command+arrow-up on the keyboard) .

You’ll see the right-facing arrow in the left margin pointing at the address where

we’re currently parked.

You should recognise this code from the static analysis in Part 2. Let’s scroll down

to where we see initWithString:.

(lldb) disassemble

How to Reverse Malware on macOS without Getting Infected 35

(lldb) br s -a 0x100003d10
(lldb) c

How to Read Registers in LLDB

Once again, the debugger halts execution at our breakpoint, right on the address

we specified. We’re almost there, but to see our decrypted string, we need to learn

how to read registers and how to print them out.

The first step is simple enough. Let’s dump all the registers in one go.

(lldb) register read

That looks like the method where the code will create a new plain-text string from

the encrypted code in unpack.txt. We can tell that because it occurs just before

the final call to return from the function, and we are supposing that the purpose

of this function is precisely to return the decrypted string.

Let’s find out if we are right. We’ll set another breakpoint directly on the address

where initWithString: is moved into the rdi register, 0x100003d10, and then

resume. I’ll use an abbreviated syntax this time to save you some typing:

https://www.tutorialspoint.com/assembly_programming/assembly_registers.htm

How to Reverse Malware on macOS without Getting Infected 36

As we’re dealing with 64-bit architecture, all our general registers begin with “r”:

rax, rbx, rcx, and so on.

When you’re trying to read method names and arguments, the two registers of

immediate interest are usually rdi and rsi. The first should hold the name of the

class being invoked while the second should actually give us the first argument.

Notice from the earlier screenshots how rsi is loaded up right before rdi in the

disassembly. Since we already know that we’re dealing with an NSString creation

in rdi, let’s have a look directly at what argument is being passed to

initWithstring: via rsi.

When we want to print or refer to the registers within lldb, we have to prepend

them with a $ sign. We use “po”, a shortcut for the expression -O command, to

print out the contents of the register as an object.

(lldb) po $rsi

https://www.objc.io/issues/19-debugging/lldb-debugging/

How to Reverse Malware on macOS without Getting Infected 37

Bingo! Now we see the encrypted string from the unpack.txt file finally revealed. It

turns out to be a shell script that downloads a zip file to a temp directory. The

man page for mktemp tells us that the string of “X” characters produces a

random directory name of the same length. The script then unzips and launches

the downloaded application and passes it the argument s on launch.

At this point, if you’d like to continue execution without jumping to another

breakpoint, you could tell lldb to advance to the next instruction with the next

command, and keep on inspecting the disassembly and registers in the same

way to fully reveal the rest of the malware’s behaviour.

How to Exit the LLDB Debugger

If you want to let the malware just play out the rest of its behaviour, use continue

again in the debugger. Since we haven’t set any more breakpoints, it’ll either

complete its execution or stop on a further call to the decrypt method.

If you don’t want the malware to continue and feel that you’ve seen enough, you

can kill the process with process kill. You can exit the low-level debugger with the

quit command.

How to Reverse Malware on macOS without Getting Infected 38

Next Steps with macOS Reverse
Engineering

If you let the malware run (and assuming the server it’s trying to contact is still

active), you can go down the rabbit hole with this one and start reverse

engineering the downloaded porcupine.zip, too. The more you practice the easier

it becomes!

Heads up: as it turns out, the porcupine.zip contains a piece of malware

recognized by Apple’s MRT tool that we’ve mentioned before.

As you continue to practice these skills, you’ll also likely need some extra

resources. Aside from the many links in this series, consider taking a look at this

book for a longer, in-depth tutorial on lldb. One of my favorite tools for taking the

pain out of binary analysis is radare2 and the suite of tools that come with it like

rabin2, rax2 and radiff2. Bonus: radare2 & friends are all free, and there’s even a

free GUI front-end, Cutter, for those who don’t like the command line! Among the

commercial offerings, Hopper is a popular choice among professional macOS

reverse engineers.

https://www.objc.io/issues/19-debugging/lldb-debugging/
https://github.com/radareorg/cutter
http://beta.rada.re/en/latest/
https://store.raywenderlich.com/products/advanced-apple-debugging-and-reverse-engineering
https://store.raywenderlich.com/products/advanced-apple-debugging-and-reverse-engineering
https://www.sentinelone.com/blog/apples-malware-removal-mrt-tool-update/

How to Reverse Malware on macOS without Getting Infected 39

Conclusion

In this tutorial, we’ve learned how to set up a safe environment to test macOS

malware and how to use static analysis and dynamic analysis to reverse

engineer a Mach-O binary. We learned how to execute code in a controlled

manner, set up breakpoints and read CPU registers. That’s quite a lot we’ve

packed in to this short introduction, but we’ve barely scratched the surface of this

deep and fascinating topic.

If this was your first foray into macOS malware reverse engineering, hopefully it

has given you a taste to explore further. If you’d like to read more on this topic,

follow the SentinelOne blog, or connect with us on Twitter, FaceBook or LinkedIn to

find out more.

https://www.linkedin.com/company/sentinelone/
https://www.facebook.com/SentinelOne/
https://twitter.com/SentinelOne
https://www.sentinelone.com/blog/

	Foreword .
	Author’s Note .
	Introduction .
	Part One .
	How To Set Up A Safe Environment To Test Malware .

	Isolate Your macOS Guests!	.
	Tools For Testing Malware On macOS .
	How To Find Malware Samples For macOS . 1
	macOS Malware File Analysis – First Steps .

	How To Check The Code Signature .
	Application Bundle Structure .
	How to Gather File Metadata .
	Review: Where We Are So Far . . .

	Part Two .
	What is a Mach-O Binary? .
	Exploring Segments & Sections .
	The Power of Pulling Strings .
	Using Otool To Examine A Binary .
	Compiling Indicators of Compromise .
	Review: Where We Are So Far

	Part Three .
	How to Run Malware Blocked by Apple .
	Using LLDB to Examine Malware .
	Launching a Process in LLDB .
	How to Read Registers in LLDB	.
	How to Exit the LLDB Debugger .
	Next Steps with macOS Reverse Engineering .
	Conclusion .

